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Preface
Janeway’s Immunobiology is intended for undergraduate 
and graduate courses and for medical students, but its 
depth and scope also make it a useful resource for train-
ees and practicing immunologists. Its narrative takes 
the host's perspective in the struggle with the microbial 
world—a viewpoint distinguishing ‘immunology’ from 
‘microbiology’. Other facets of immunology, such as auto-
immunity, immunodeficiencies, allergy, transplant rejec-
tion, and new aspects of cancer immunotherapy are also 
covered in depth, and a companion book, Case Studies 
in Immunology, provides clinical examples of immune- 
related disease. In Immunobiology, symbols in the margin 
indicate where the basic immunological concepts related 
to Case Studies are discussed. 

The ninth edition retains the previous organization of 
five major sections and sixteen chapters, but reorganizes 
content to clarify presentation and eliminate redundan-
cies, updating each chapter and adding over 100 new fig-
ures. The first section (Chapters 1–3) includes the latest 
developments in innate sensing mechanisms and covers 
new findings in innate lymphoid cells and the concept 
of ‘immune effector modules’ that is used throughout 
the rest of the book. Coverage of chemokine networks 
has been updated throughout (Chapters 3 and 11). The 
second section (Chapters 4–6) adds new findings for 
γ:δ T cell recognition and for the targeting of activation- 
induced cytidine deaminase (AID) class switch recombi-
nation. The third section (Chapters 7 and 8) is extensively 
updated and covers new material on integrin activation, 
cytoskeletal reorganization, and Akt and mTOR signaling. 
The fourth section enhances coverage of CD4 T cell sub-
sets (Chapter 9), including follicular helper T cells that 
regulate switching and affinity maturation (Chapter 10). 
Chapter 11 now organizes innate and adaptive responses 
to pathogens around the effector module concept, and 
features new findings for tissue-resident memory T cells. 
Chapter 12 has been thoroughly updated to keep pace with 
the quickly advancing field of mucosal immunity. In the 
last section, coverage of primary and secondary immuno-
deficiencies has been reorganized and updated with an 
expanded treatment of immune evasion by pathogens and 
HIV/AIDS (Chapter 13). Updated and more detailed con-
sideration of allergy and allergic diseases are presented 
in Chapter 14, and for autoimmunity and transplantation 
in Chapter 15. Finally, Chapter 16 has expanded coverage 
of new breakthroughs in cancer immunotherapy, includ-
ing ‘checkpoint blockade’ and chimeric antigen receptor 
(CAR) T-cell therapies. 

End-of-chapter review questions have been completely 
updated in the ninth edition, posed in a variety of for-
mats, with answers available online. Appendix I: The 
Immunologist's Toolbox has undergone a comprehensive 

revitalization with the addition of many new techniques, 
including the CRISPR/Cas9 system and mass spectrom-
etry/proteomics. Finally, a new Question Bank has been 
created to aid instructors in the development of exams 
that require the student to reflect upon and synthesize 
concepts in each chapter. 

Once again, we benefited from the expert revision of 
Chapter 12 by Allan Mowat, and from contributions of two 
new contributors, David Chaplin and Leslie Berg. David's 
combined clinical and basic immunologic strengths 
greatly improved Chapter 14, and Leslie applied her sig-
naling expertise to Chapters 7 and 8, and Appendix I, and 
her strength as an educator in creating the new Question 
Bank for instructors. Many people deserve special thanks. 
Gary Grajales wrote all end-of-chapter questions. New for 
this edition, we enlisted input from our most important 
audience and perhaps best critics—students of immunol-
ogy-in-training who provided feedback on drafts of indi-
vidual chapters, and Appendices II–IV. We benefitted from 
our thoughtful colleagues who reviewed the eighth edi-
tion. They are credited in the Acknowledgments section; 
we are indebted to them all. 

We have the good fortune to work with an outstanding 
group at Garland Science. We thank Monica Toledo, our 
development editor, who coordinated the entire project, 
guiding us gently but firmly back on track throughout the 
process, with efficient assistance from Allie Bochicchio and 
Claudia Acevedo-Quiñones. We thank Denise Schanck, 
our publisher, who, as always, contributed her guidance, 
support, and wisdom. We thank Adam Sendroff, who is 
instrumental in relaying information about the book to 
immunologists around the world. As in all previous edi-
tions, Matt McClements has contributed his genius—and 
patience—re-interpreting authors' sketches into elegant 
illustrations. We warmly welcome our new text editor 
Elizabeth Zayetz, who stepped in for Eleanor Lawrence, 
our previous editor, and guiding light. The authors wish to 
thank their most important partners—Theresa and Cindy 
Lou—colleagues in life who have supported this effort 
with their generosity of time, their own editorial insights, 
and their infinite patience. 

As temporary stewards of Charlie’s legacy, Janeway’s 
Immunobiology, we hope this ninth edition will continue 
to inspire—as he did—students to appreciate immuno
logy's beautiful subtlety. We encourage all readers to share 
with us their views on where we have come up short, so 
the next edition will further approach the asymptote. 
Happy reading!

Kenneth Murphy

Casey Weaver 
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Resources for Instructors and Students
The teaching and learning resources for instructors and 
students are available online. The homework platform 
is available to interested instructors and their students. 
Instructors will need to set up student access in order to 
use the dashboard to track student progress on assign-
ments. The instructor's resources on the Garland Science 
website are password-protected and available only to 
adopting instructors. The student resources on the Garland 
Science website are available to everyone. We hope these 
resources will enhance student learning and make it easier 
for instructors to prepare dynamic lectures and activities 
for the classroom.

Online Homework Platform with Instructor 
Dashboard
Instructors can obtain access to the online homework 
platform from their sales representative or by emailing 
science@garland.com. Students who wish to use the 
platform must purchase access and, if required for class, 
obtain a course link from their instructor. 

The online homework platform is designed to improve and 
track student performance. It allows instructors to select 
homework assignments on specific topics and review the 
performance of the entire class, as well as individual stu-
dents, via the instructor dashboard. The user-friendly sys-
tem provides a convenient way to gauge student progress, 
and tailor classroom discussion, activities, and lectures to 
areas that require specific remediation. The features and 
assignments include:

•	 Instructor Dashboard displays data on student perfor-
mance: such as responses to individual questions and 
length of time spent to complete assignments.

•	 Tutorials explain essential or difficult concepts and are 
integrated with a variety of questions that assess student 
engagement and mastery of the material.

The tutorials were created by Stacey A. Gorski, University 
of the Sciences in Philadelphia.

Instructor Resources
Instructor Resources are available on the Garland Science 
Instructor's Resource Site, located at www.garlandscience.
com/instructors. The website provides access not only to 
the teaching resources for this book but also to all other 
Garland Science textbooks. Adopting instructors can 
obtain access to the site from their sales representative or 
by emailing science@garland.com.

Art of Janeway's Immunobiology, Ninth Edition 
The images from the book are available in two convenient 
formats: PowerPoint® and JPEG. They have been opti-
mized for display on a computer. Figures are searchable by 
figure number, by figure name, or by keywords used in the 
figure legend from the book.

Figure-Integrated Lecture Outlines
The section headings, concept headings, and figures 
from the text have been integrated into PowerPoint® 

presentations. These will be useful for instructors who 
would like a head start creating lectures for their course. 
Like all of our PowerPoint® presentations, the lecture out-
lines can be customized. For example, the content of these 
presentations can be combined with videos and questions 
from the book or Question Bank, in order to create unique 
lectures that facilitate interactive learning.

Animations and Videos
The animations and videos that are available to students 
are also available on the Instructor's Website in two for-
mats. The WMV-formatted movies are created for instruc-
tors who wish to use the movies in PowerPoint® presenta-
tions on Windows® computers; the QuickTime-formatted 
movies are for use in PowerPoint® for Apple computers or 
Keynote® presentations. The movies can easily be down-
loaded using the ‘download’ button on the movie preview 
page. The movies are related to specific chapters and call-
outs to the movies are highlighted in color throughout the 
textbook.

Question Bank
Written by Leslie Berg, University of Massachusetts 
Medical School, the Question Bank includes a variety of 
question formats: multiple choice, fill-in-the-blank, true-
false, matching, essay, and challenging synthesis ques-
tions. There are approximately 30–40 questions per chap-
ter, and a large number of the multiple-choice questions 
will be suitable for use with personal response systems 
(that is, clickers). The Question Bank provides a compre-
hensive sampling of questions that require the student to 
reflect upon and integrate information, and can be used 
either directly or as inspiration for instructors to write their 
own test questions.

Student Resources
The resources for students are available on the Janeway's 
Immunobiology Student Website, located at students.
garlandscience.com. 

Answers to End-of-Chapter Questions
Answers to the end-of-chapter questions are available to 
students for self-testing. 

Animations and Videos
There are over 40 narrated movies, covering a range of 
immunology topics, which review key concepts and illu-
minate the experimental process. 

Flashcards
Each chapter contains flashcards, built into the student 
website, that allow students to review key terms from the 
text.

Glossary
The comprehensive glossary of key terms from the book is 
online and can be searched or browsed.
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Immunology is the study of the body’s defense against infection. We are con-
tinually exposed to microorganisms, many of which cause disease, and yet 
become ill only rarely. How does the body defend itself? When infection does 
occur, how does the body eliminate the invader and cure itself? And why do we 
develop long-lasting immunity to many infectious diseases encountered once 
and overcome? These are the questions addressed by immunology, which we 
study to understand our body’s defenses against infection at the cellular and 
molecular levels.

The beginning of immunology as a science is usually attributed to Edward 
Jenner for his work in the late 18th century (Fig. 1.1). The notion of immunity—
that surviving a disease confers greater protection against it later—was known 
since ancient Greece. Variolation—the inhalation or transfer into superficial 
skin wounds of material from smallpox pustules—had been practiced since 
at least the 1400s in the Middle East and China as a form of protection against 
that disease and was known to Jenner. Jenner had observed that the relatively 
mild disease of cowpox, or vaccinia, seemed to confer protection against the 
often fatal disease of smallpox, and in 1796, he demonstrated that inoculation 
with cowpox protected the recipient against smallpox. His scientific proof 
relied on the deliberate exposure of the inoculated individual to infectious 
smallpox material two months after inoculation. This scientific test was his 
original contribution.

Jenner called the procedure vaccination. This term is still used to describe 
the inoculation of healthy individuals with weakened or attenuated strains of 
disease-causing agents in order to provide protection from disease. Although 
Jenner’s bold experiment was successful, it took almost two centuries for 
smallpox vaccination to become universal. This advance enabled the World 
Health Organization to announce in 1979 that smallpox had been eradicated 
(Fig. 1.2), arguably the greatest triumph of modern medicine.

Jenner’s strategy of vaccination was extended in the late 19th century by the 
discoveries of many great microbiologists. Robert Koch proved that infectious 
diseases are caused by specific microorganisms. In the 1880s, Louis Pasteur 
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Fig. 1.1 Edward Jenner. Portrait by John 
Raphael Smith. Reproduced courtesy of 
Yale University, Harvey Cushing/John Hay 
Whitney Medical Library.
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2 Chapter 1: Basic Concepts in Immunology

devised a vaccine against cholera in chickens, and developed a rabies vaccine 
that proved to be a spectacular success upon its first trial in a boy bitten by a 
rabid dog.

These practical triumphs led to a search for vaccination’s mechanism of 
protection and to the development of the science of immunology. In the 
early 1890s, Emil von Behring and Shibasaburo Kitasato discovered that 
the serum of animals immune to diphtheria or tetanus contained a specific 
‘antitoxic activity’ that could confer short-lived protection against the effects 
of diphtheria or tetanus toxins in people. This activity was later determined 
to be due to the proteins we now call antibodies, which bind specifically to 
the toxins and neutralize their activity. That these antibodies might have a 
crucial role in immunity was reinforced by Jules Bordet’s discovery in 1899 of 
complement, a component of serum that acts in conjunction with antibodies 
to destroy pathogenic bacteria.

A specific response against infection by potential pathogens, such as the pro-
duction of antibodies against a particular pathogen, is known as adaptive 
immunity, because it develops during the lifetime of an individual as an adap-
tation to infection with that pathogen. Adaptive immunity is distinguished 
from innate immunity, which was already known at the time von Behring was 
developing serum therapy for diphtheria chiefly through the work of the great 
Russian immunologist Elie Metchnikoff, who discovered that many micro-
organisms could be engulfed and digested by phagocytic cells, which thus 
provide defenses against infection that are nonspecific. Whereas these cells—
which Metchnikoff called 'macrophages'—are always present and ready to act, 
adaptive immunity requires time to develop but is highly specific.

It was soon clear that specific antibodies could be induced against a vast range 
of substances, called antigens because they could stimulate antibody genera-
tion. Paul Ehrlich advanced the development of an antiserum as a treatment 
for diphtheria and developed methods to standardize therapeutic serums. 
Today the term antigen refers to any substance recognized by the adaptive 
immune system. Typically antigens are common proteins, glycoproteins, and 
polysaccharides of pathogens, but they can include a much wider range of 
chemical structures, for example, metals such as nickel, drugs such as peni-
cillin, and organic chemicals such as the urushiol (a mix of pentadecylcatech-
ols) in the leaves of poison ivy. Metchnikoff and Ehrlich shared the 1908 Nobel 
Prize for their respective work on immunity.

This chapter introduces the principles of innate and adaptive immunity, the 
cells of the immune system, the tissues in which they develop, and the tissues 
through which they circulate. We then outline the specialized functions of the 
different types of cells by which they eliminate infection.

The origins of vertebrate immune cells.

The body is protected from infectious agents, their toxins, and the damage they 
cause by a variety of effector cells and molecules that together make up the 
immune system. Both innate and adaptive immune responses depend upon 
the activities of white blood cells or leukocytes. Most cells of the immune sys-
tem arise from the bone marrow, where many of them develop and mature. 
But some, particularly certain tissue-resident macrophage populations (for 
example, the microglia of the central nervous system), originate from the yolk 
sack or fetal liver during embryonic development. They seed tissues before 
birth and are maintained throughout life as independent, self-renewing pop-
ulations. Once mature, immune cells reside within peripheral tissues, circu-
late in the bloodstream, or circulate in a specialized system of vessels called 
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Fig. 1.2 The eradication of smallpox by 
vaccination. After a period of 3 years in 
which no cases of smallpox were recorded, 
the World Health Organization was able 
to announce in 1979 that smallpox had 
been eradicated, and vaccination stopped 
(upper panel). A few laboratory stocks 
have been retained, however, and some 
fear that these are a source from which 
the virus might reemerge. Ali Maow Maalin 
(lower panel) contracted and survived the 
last case of smallpox in Somalia in 1977. 
Photograph courtesy of Dr. Jason Weisfeld.
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3Principles of innate immunity.

the lymphatic system. The lymphatic system drains extracellular fluid and 
immune cells from tissues and transports them as lymph that is eventually 
emptied back into the blood system.

All the cellular elements of blood, including the red blood cells that transport 
oxygen, the platelets that trigger blood clotting in damaged tissues, and the 
white blood cells of the immune system, ultimately derive from the hemato-
poietic stem cells (HSCs) of the bone marrow. Because these can give rise 
to all the different types of blood cells, they are often known as pluripotent 
hematopoietic stem cells. The hematopoietic stem cells give rise to cells of 
more limited developmental potential, which are the immediate progenitors 
of red blood cells, platelets, and the two main categories of white blood cells, 
the lymphoid and myeloid lineages. The different types of blood cells and 
their lineage relationships are summarized in Fig. 1.3.

Principles of innate immunity.

In this part of the chapter we will outline the principles of innate immunity 
and describe the molecules and cells that provide continuous defense against 
invasion by pathogens. Although the white blood cells known as lymphocytes 
possess the most powerful ability to recognize and target pathogenic microor-
ganisms, they need the participation of the innate immune system to initiate 
and mount their offensive. Indeed, the adaptive immune response and innate 
immunity use many of the same destructive mechanisms to eliminate invad-
ing microorganisms.

1-1 	 Commensal organisms cause little host damage while 
pathogens damage host tissues by a variety of mechanisms.

We recognize four broad categories of disease-causing microorganisms, or 
pathogens: viruses, bacteria and archaea, fungi, and the unicellular and mul-
ticellular eukaryotic organisms collectively termed parasites (Fig. 1.4). These 
microorganisms vary tremendously in size and in how they damage host tis-
sues. The smallest are viruses, which range from five to a few hundred nanom-
eters in size and are obligate intracellular pathogens. Viruses can directly kills 
cells by inducing lysis during their replication. Somewhat larger are intracel-
lular bacteria and mycobacteria. These can kill cells directly or damage cells 
by producing toxins. Many single-celled intracellular parasites, such as mem-
bers of the Plasmodium genus that cause malaria, also directly kill infected 
cells. Pathogenic bacteria and fungi growing in extracellular spaces can induce 
shock and sepsis by releasing toxins into the blood or tissues. The largest path-
ogens—parasitic worms, or helminths—are too large to infect host cells but 
can injure tissues by forming cysts that induce damaging cellular responses in 
the tissues into which the worms migrate.

Not all microbes are pathogens. Many tissues, especially the skin, oral mucosa, 
conjunctiva, and gastrointestinal tract, are constantly colonized by microbial 
communities—called the microbiome—that consist of archaea, bacteria, and 
fungi but cause no damage to the host. These are also called commensal 
microorganisms, since they can have a symbiotic relationship with the host. 
Indeed, some commensal organisms perform important functions, as in the 
case of the bacteria that aid in cellulose digestion in the stomachs of rumi-
nants. The difference between commensal organisms and pathogens lies in 
whether they induce damage. Even enormous numbers of microbes in the 
intestinal microbiome normally cause no damage and are confined within the 
intestinal lumen by a protective layer of mucus, whereas pathogenic bacteria 
can penetrate this barrier, injure intestinal epithelial cells, and spread into the 
underlying tissues.
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Fig. 1.3 All the cellular elements of the blood, including 
the cells of the immune system, arise from pluripotent 
hematopoietic stem cells in the bone marrow. These pluripotent 
cells divide to produce two types of stem cells. A common lymphoid 
progenitor gives rise to the lymphoid lineage (blue background) of 
white blood cells or leukocytes—the innate lymphoid cells (ILCs) and 
natural killer (NK) cells and the T and B lymphocytes. A common 
myeloid progenitor gives rise to the myeloid lineage (pink and 
yellow backgrounds), which comprises the rest of the leukocytes, 
the erythrocytes (red blood cells), and the megakaryocytes that 
produce platelets important in blood clotting. T and B lymphocytes 
are distinguished from the other leukocytes by having antigen 
receptors and from each other by their sites of differentiation—the 
thymus and bone marrow, respectively. After encounter with antigen, 
B cells differentiate into antibody-secreting plasma cells, while 

T cells differentiate into effector T cells with a variety of functions. 
Unlike T and B cells, ILCs and NK cells lack antigen specificity. 
The remaining leukocytes are the monocytes, the dendritic cells, 
and the neutrophils, eosinophils, and basophils. The last three of 
these circulate in the blood and are termed granulocytes, because 
of the cytoplasmic granules whose staining gives these cells a 
distinctive appearance in blood smears, or polymorphonuclear 
leukocytes, because of their irregularly shaped nuclei. Immature 
dendritic cells (yellow background) are phagocytic cells that enter 
the tissues; they mature after they have encountered a potential 
pathogen. The majority of dendritic cells are derived from the 
common myeloid progenitor cells, but some may also arise from the 
common lymphoid progenitor. Monocytes enter tissues, where they 
differentiate into phagocytic macrophages or dendritic cells. Mast 
cells also enter tissues and complete their maturation there.
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1-2 	 Anatomic and chemical barriers are the first defense against 
pathogens.

The host can adopt three strategies to deal with the threat posed by microbes: 
avoidance, resistance, and tolerance. Avoidance mechanisms prevent 
exposure to microbes, and include both anatomic barriers and behavior 
modifications. If an infection is established, resistance is aimed at reducing 
or eliminating pathogens. To defend against the great variety of microbes, the 
immune system has numerous molecular and cellular functions, collectively 
called mediators, or effector mechanisms, suited to resist different categories 
of pathogens. Their description is a major aspect of this book. Finally, 
tolerance involves responses that enhance a tissue’s capacity to resist damage 
induced by microbes. This meaning of the term ‘tolerance’ has been used 
extensively in the context of disease susceptibility in plants rather than animal 
immunity. For example, increasing growth by activating dormant meristems, 
the undifferentiated cells that generate new parts of the plant, is a common 
tolerance mechanism in response to damage. This should be distinguished 
from the term immunological tolerance, which refers to mechanisms that 
prevent an immune response from being mounted against the host’s own 
tissues.

Anatomic and chemical barriers are the initial defenses against infection 
(Fig. 1.5). The skin and mucosal surfaces represent a kind of avoidance strat-
egy that prevents exposure of internal tissues to microbes. At most anatomic 
barriers, additional resistance mechanisms further strengthen host defenses. 
For example, mucosal surfaces produce a variety of antimicrobial proteins 
that act as natural antibiotics to prevent microbes from entering the body.

If these barriers are breached or evaded, other components of the innate 
immune system can immediately come into play. We mentioned earlier the 
discovery by Jules Bordet of complement, which acts with antibodies to 
lyse bacteria. Complement is a group of around 30 different plasma proteins 
that act together and are one of the most important effector mechanisms in 
serum and interstitial tissues. Complement not only acts in conjunction with 
antibodies, but can also target foreign organisms in the absence of a specific 
antibody; thus it contributes to both innate and adaptive responses. We will 
examine anatomic barriers, the antimicrobial proteins, and complement in 
greater detail in Chapter 2.
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Fig. 1.4 Pathogens vary greatly in size and lifestyle. 
Intracellular pathogens include viruses, such as herpes simplex 
(first panel), and various bacteria, such as Listeria monocytogenes 
(second panel). Many bacteria, such as Staphylococcus aureus 
(third panel), or fungi, such as Aspergillus fumigates (fourth panel), 
can grow in the extracellular spaces and directly invade through 

tissues, as do some archaea and protozoa (third panel). Many 
parasites, such as the nematode Strongyloides stercoralis 
(fifth panel), are large multicellular organisms that can move 
throughout the body in a complex life cycle. Second panel courtesy 
of Dan Portnoy. Fifth panel courtesy of James Lok.
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Fig. 1.5 Protection against pathogens 
relies on several levels of defense. 
The first is the anatomic barrier provided 
by the body’s epithelial surfaces. Second, 
various chemical and enzymatic systems, 
including complement, act as an immediate 
antimicrobial barrier near these epithelia. 
If epithelia are breached, nearby various 
innate lymphoid cells can coordinate a rapid 
cell-mediated defense. If the pathogen 
overcomes these barriers, the slower-acting 
defenses of the adaptive immune system 
are brought to bear.
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6 Chapter 1: Basic Concepts in Immunology

1-3 	 The immune system is activated by inflammatory inducers that 
indicate the presence of pathogens or tissue damage.

A pathogen that breaches the host’s anatomic and chemical barriers will 
encounter the cellular defenses of innate immunity. Cellular immune 
responses are initiated when sensor cells detect inflammatory inducers 
(Fig.  1.6). Sensor cells include many cell types that detect inflammatory 
mediators through expression of many innate recognition receptors, which 
are encoded by a relatively small number of genes that remain constant over 
an individual’s lifetime. Inflammatory inducers that trigger these receptors 
include molecular components unique to bacteria or viruses, such as bacterial 
lipopolysaccharides, or molecules such as ATP, which is not normally found in 
the extracellular space. Triggering these receptors can activate innate immune 
cells to produce various mediators that either act directly to destroy invading 
microbes, or act on other cells to propagate the immune response. For exam-
ple, macrophages can ingest microbes and produce toxic chemical mediators, 
such as degradative enzymes or reactive oxygen intermediates, to kill them. 
Dendritic cells may produce cytokine mediators, including many cytokines 
that activate target tissues, such as epithelial or other immune cells, to resist 
or kill invading microbes more efficiently. We will discuss these receptors and 
mediators briefly below and in much greater detail in Chapter 3.

Innate immune responses occur rapidly on exposure to an infectious organ-
ism (Fig. 1.7). In contrast, responses by the adaptive immune system take days 
rather than hours to develop. However, the adaptive immune system is capa-
ble of eliminating infections more efficiently because of exquisite specificity 
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Fig. 1.7 Phases of the immune response.

Fig. 1.6 Cell-mediated immunity 
proceeds in a series of steps. 
Inflammatory inducers are chemical 
structures that indicate the presence of 
invading microbes or the cellular damage 
produced by them. Sensor cells detect 
these inducers by expressing various innate 
recognition receptors, and in response 
produce a variety of mediators that act 
directly in defense or that further propagate 
the immune response. Mediators include 
many cytokines, and they act on various 
target tissues, such as epithelial cells, to 
induce antimicrobial proteins and resist 
intracellular viral growth; or on other 
immune cells, such as ILCs that produce 
other cytokines that amplify the immune 
response.
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of antigen recognition by its lymphocytes. In contrast to a limited repertoire 
of receptors expressed by innate immune cells, lymphocytes express highly 
specialized antigen receptors that collectively possess a vast repertoire of 
specificity. This enables the adaptive immune system to respond to virtually 
any pathogen and effectively focus resources to eliminate pathogens that have 
evaded or overwhelmed innate immunity. But the adaptive immune system 
interacts with, and relies on, cells of the innate immune system for many of 
its functions. The next several sections will introduce the major components 
of the innate immune system and prepare us to consider adaptive immunity 
later in the chapter.

1-4	 The myeloid lineage comprises most of the cells of the innate 
immune system.

The common myeloid progenitor (CMP) is the precursor of the macro
phages, granulocytes (the collective term for the white blood cells called 
neutrophils, eosinophils, and basophils), mast cells, and dendritic cells of the 
innate immune system. Macrophages, granulocytes, and dendritic cells make 
up the three types of phagocytes in the immune system. The CMP also gener-
ates megakaryocytes and red blood cells, which we will not be concerned with 
here. The cells of the myeloid lineage are shown in Fig. 1.8.

Macrophages are resident in almost all tissues. Many tissue-resident mac-
rophages arise during embryonic development, but some macrophages that 
arise in the adult animal from the bone marrow are the mature form of mono-
cytes, which circulate in the blood and continually migrate into tissues, where 
they differentiate. Macrophages are relatively long-lived cells and perform 
several different functions throughout the innate immune response and the 
subsequent adaptive immune response. One is to engulf and kill invading 
microorganisms. This phagocytic function provides a first defense in innate 
immunity. Macrophages also dispose of pathogens and infected cells targeted 
by an adaptive immune response. Both monocytes and macrophages are 
phagocytic, but most infections occur in the tissues, and so it is primarily mac-
rophages that perform this important protective function. An additional and 
crucial role of macrophages is to orchestrate immune responses: they help 
induce inflammation, which, as we shall see, is a prerequisite to a successful 
immune response, and they produce many inflammatory mediators that acti-
vate other immune-system cells and recruit them into an immune response.

Local inflammation and the phagocytosis of invading bacteria can also be 
triggered by the activation of complement. Bacterial surfaces can activate 
the complement system, inducing a cascade of proteolytic reactions that coat 
the microbes with fragments of specific proteins of the complement system. 
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Fig. 1.8 Myeloid cells in innate and adaptive immunity. In the rest of the book, these 
cells will be represented in the schematic form shown on the left. A photomicrograph of each 
cell type is shown on the right. Macrophages and neutrophils are primarily phagocytic cells 
that engulf pathogens and destroy them in intracellular vesicles, a function they perform in 
both innate and adaptive immune responses. Dendritic cells are phagocytic when they are 
immature and can take up pathogens; after maturing, they function as specialized cells that 
present pathogen antigens to T lymphocytes in a form they can recognize, thus activating 
T lymphocytes and initiating adaptive immune responses. Macrophages can also present 
antigens to T lymphocytes and can activate them. The other myeloid cells are primarily 
secretory cells that release the contents of their prominent granules upon activation via 
antibody during an adaptive immune response. Eosinophils are thought to be involved in 
attacking large antibody-coated parasites such as worms; basophils are also thought to be 
involved in anti-parasite immunity. Mast cells are tissue cells that trigger a local inflammatory 
response to antigen by releasing substances that act on local blood vessels. Mast cells, 
eosinophils, and basophils are also important in allergic responses. Photographs courtesy of 
N. Rooney, R. Steinman, and D. Friend.
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Microbes coated in this way are recognized by specific complement receptors 
on macrophages and neutrophils, taken up by phagocytosis, and destroyed. 
In addition to their specialized role in the immune system, macrophages act 
as general scavenger cells in the body, clearing it of dead cells and cell debris.

The granulocytes are named for the densely staining granules in their cyto-
plasm; they are also called polymorphonuclear leukocytes because of their 
oddly shaped nuclei. The three types of granulocytes—neutrophils, eosino-
phils, and basophils— are distinguished by the different staining properties of 
their granules, which serve distinct functions. Granulocytes are all relatively 
short-lived, surviving for only a few days. They mature in the bone marrow, 
and their production increases during immune responses, when they migrate 
to sites of infection or inflammation. The phagocytic neutrophils are the most 
numerous and important cells in innate immune responses: they take up a 
variety of microorganisms by phagocytosis and efficiently destroy them in 
intracellular vesicles by using degradative enzymes and other antimicrobial 
substances stored in their cytoplasmic granules. Hereditary deficiencies in 
neutrophil function open the way to overwhelming bacterial infection, which 
is fatal if untreated. Their role is discussed further in Chapter 3.

Eosinophils and basophils are less abundant than neutrophils, but like neu-
trophils, they have granules containing a variety of enzymes and toxic proteins, 
which are released when these cells are activated. Eosinophils and basophils 
are thought to be important chiefly in defense against parasites, which are too 
large to be ingested by macrophages or neutrophils. They can also contribute 
to allergic inflammatory reactions, in which their effects are damaging rather 
than protective.

Mast cells begin development in the bone marrow, but migrate as immature 
precursors that mature in peripheral tissues, especially skin, intestines, and 
airway mucosa. Their granules contain many inflammatory mediators, such 
as histamine and various proteases, which play a role in protecting the inter-
nal surfaces from pathogens, including parasitic worms. We cover eosinophils, 
basophils, and mast cells and their role in allergic inflammation further in 
Chapters 10 and 14.

Dendritic cells were discovered in the 1970s by Ralph Steinman, for which he 
received half the 2011 Nobel Prize. These cells form the third class of phagocytic 
cells of the immune system and include several related lineages whose distinct 
functions are still being clarified. Most dendritic cells have elaborate mem-
branous processes, like the dendrites of nerve cells. Immature dendritic cells 
migrate through the bloodstream from the bone marrow to enter tissues. They 
take up particulate matter by phagocytosis and also continually ingest large 
amounts of the extracellular fluid and its contents by a process known as mac-
ropinocytosis. They degrade the pathogens that they take up, but their main 
role in the immune system is not the clearance of microorganisms. Instead, 
dendritic cells are a major class of sensor cells whose encounter with path-
ogens triggers them to produce mediators that activate other immune cells. 
Dendritic cells were discovered because of their role in activating a particular 
class of lymphocytes—T lymphocytes—of the adaptive immune system, and 
we will return to this activity when we discuss T-cell activation in Section 1-15. 
But dendritic cells and the mediators they produce also play a critical role in 
controlling responses of cells of the innate immune system.

1-5	 Sensor cells express pattern recognition receptors that 
provide an initial discrimination between self and nonself.

Long before the mechanisms of innate recognition were discovered, it was 
recognized that purified antigens such as proteins often did not evoke an 
immune response in an experimental immunization—that is, they were not 
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